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Abstract—We investigated the relative importance and 

predictive power of different frequency bands of subcutaneous 
glucose signals for the short-term (0-50 min) forecasting of 
glucose concentrations in type 1 diabetic patients with data-
driven, autoregressive (AR) models.  The study data consisted of 
minute-by-minute glucose signals collected from nine deidentified 
patients over a five-day period using continuous glucose 
monitoring devices. AR models were developed using single and 
pairwise combinations of frequency bands of the glucose signal 
and compared with a reference model including all bands. The 
results suggest that: for open-loop applications, there is no need 
to explicitly represent exogenous inputs, such as meals and insulin 
intake, in AR models; models based on a single-frequency band, 
with periods between 60-120 min or 150-500 min, yield good 
predictive power (error <3 mg/dL) for prediction horizons of up 
to 25 min; models based on pairs of bands produce predictions 
that are indistinguishable from those of the reference model as 
long as the 60-120 min period band is included; and AR models 
can be developed on signals of short length (~300 min), i.e., 
ignoring long circadian rhythms, without any detriment in 
prediction accuracy. Together, these findings provide insights 
into efficient development of more effective and parsimonious 
data-driven models for short-term prediction of glucose 
concentrations in diabetic patients. 
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I. INTRODUCTION 
ECENT developments in continuous glucose  monitoring 
(CGM) offer new opportunities and challenges in data 

collection and analysis [1], as these CGM devices can sample 
subcutaneous glucose concentrations as frequently as every 
minute and store the sampled time series for up to several days 
for retrospective analysis. On one hand, this abundance of 
information opens new opportunities in data analysis and the 
understanding of the mechanisms of glucose regulation, while, 
on the other hand, it poses additional challenges in terms of 
information processing and interpretation. Long and frequently 
sampled time-series data collected from CGM devices have 
naturally invited the use of techniques that require continual 
availability of glucose data, such as Kalman filtering [2] and 
techniques that are purely data driven, such as autoregressive 
(AR) models [3], for short-term prediction of glucose 
concentrations in diabetic patients [4-8]. The obvious 
advantages of AR models are their analytical tractability and 
their ability to linearly extrapolate future time-series values, 
producing a reliable and accurate forecast. However, to yield 
accurate predictions, AR models need to be fitted to a 
―training‖ signal and the fitting procedure should lead to a 
sequence of AR model coefficients that capture the major 
frequency components (or bands) in the glucose signal. 

The frequency bands in blood glucose signals reflect the 
physiological mechanisms of glucose regulation, with different 
mechanisms driving different frequency bands. For example, 
in healthy individuals, the pulsatile insulin secreted by the 
pancreas is reflected in patterns of blood glucose signal 
oscillations with periods between 4 and 15 min [9]. Similarly, 
the patterns associated with postprandial glucose regulation of 
healthy individuals have predominant periods ranging from 51 
to 112 min [10], with larger amplitude oscillations observed 
after evening meals and smaller ones after morning meals, 
reflecting the circadian rhythmicity of glucose regulation [11].  

Recently, Rahaghi and Gough suggested that the spectrum 
of oscillations in blood glucose signals of healthy individuals 
could be characterized by four major frequency bands [12]. 

The Importance of Different Frequency Bands 
in Predicting Subcutaneous Glucose 

Concentration in Type 1 Diabetic Patients  
Yinghui Lu, Andrei V. Gribok, W. Kenneth Ward, and Jaques Reifman*  

R 

Authorized licensed use limited to: Georgia State University. Downloaded on May 27,2010 at 20:42:15 UTC from IEEE Xplore.  Restrictions apply. 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
FEB 2010 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2010 to 00-00-2010  

4. TITLE AND SUBTITLE 
The Importance of Different Frequency Bands in Predicting
Subcutaneous Glucose Concentration in Type 1 Diabetic Patients 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Army Medical Research and Materiel Command,Telemedicine and
Advanced Technology Research Center,504 Scott St,Fort 
Detrick,MD,21702 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
IEEE Trans Biomed Eng. 2010 April 15; 57(8):1839-1846. 

14. ABSTRACT 
We investigated the relative importance and predictive power of different frequency bands of
subcutaneous glucose signals for the short-term (0-50 min) forecasting of glucose concentrations in type 1
diabetic patients with datadriven autoregressive (AR) models. The study data consisted of
minute-by-minute glucose signals collected from nine deidentified patients over a five-day period using
continuous glucose monitoring devices. AR models were developed using single and pairwise combinations
of frequency bands of the glucose signal and compared with a reference model including all bands. The
results suggest that: for open-loop applications, there is no need to explicitly represent exogenous inputs,
such as meals and insulin intake, in AR models; models based on a single-frequency band with periods
between 60-120 min or 150-500 min, yield good predictive power (error <3 mg/dL) for prediction horizons
of up to 25 min; models based on pairs of bands produce predictions that are indistinguishable from those
of the reference model as long as the 60-120 min period band is included; and AR models can be developed
on signals of short length (~300 min), i.e. ignoring long circadian rhythms, without any detriment in
prediction accuracy. Together, these findings provide insights into efficient development of more effective
and parsimonious data-driven models for short-term prediction of glucose concentrations in diabetic 
patients. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 



Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TBME-00930-2009.R1 
 

2 

They suggest that the lowest frequency band, corresponding to 
periods of at least 700 min (Band IV), reflects patterns of 
glucose regulation associated with ultradian rhythms of long 
periodicity and circadian rhythms. The first mid-frequency 
band, spanning oscillations with periods from 150 to 500 min 
(Band III), is believed to be primarily associated with the 
schedules of exogenous inputs, such as the time of meals and 
insulin boluses intake, while the second mid-frequency band, 
spanning periods from 60 to 120 min (Band II), is deemed to 
reflect insulin secretion in response to continuous enteral 
nutrition, constant intravenous glucose infusion, or ingestion 
of a meal or insulin boluses [10, 13]. These oscillations are 
considered to be intrinsic responses [12] because they can be 
interpreted as a step, or an impulse, response of the glucose 
regulatory system. The highest frequency band, with periods 
between 5 and 15 min (Band I), is assumed to be generated by 
rapid pulsatile insulin secretion by pancreatic β cells and is 
best observed in fasting, non-diabetic subjects [9]. However, 
because β cells are destroyed in type 1 diabetic patients and 
insulin is not produced, these high frequencies are absent in 
the blood glucose signals of this patient population [14].  

In contrast to blood glucose, there is a limited body of work 
concerning the frequency analysis of subcutaneous CGM 
signals, which, due to time delays and signal attenuation from 
blood-to-interstitial transport, may differ from that of the blood 
glucose, requiring additional independent studies. By and 
large, the existing studies of the spectrum of CGM signals are 
limited to Fourier series analysis [15, 16] and are not guided to 
educating the development of predictive glucose models. For 
example, Breton et al. performed Fourier analysis for 
determining the minimal sampling periods of blood and 
subcutaneous CGM signals of type 1 diabetic patients and 
concluded that CGM signals of periods shorter than 36 min are 
nonexistent [15]. This loss of information is attributed to the 
lowpass filtering effect caused by the blood-to-interstitial 
transport of glucose concentration. In a separate Fourier 
analysis study, Miller and Strange [16] suggest that, in type 1 
diabetic patients, the amplitude of the second and third 
harmonics of CGM signals are correlated with mean HbA1c 
values and that, in type 2 diabetic patients, the frequency 
content with periods shorter than 72 min is characterized by 
white noise. 

The efficient development of glucose concentration 
predictive models for type 1 diabetic patients, in particular 
data-driven AR models, where the model coefficients capture 
the frequency content of the signal [4, 5], require a more 
detailed analysis of the frequency components of the CGM 
glucose signal so that the relative importance and predictive 
power of the different frequency bands are properly 
characterized. In particular, the answers to the following key, 
yet unknown, questions need to be addressed: (1) How to 
optimize the glucose signal filtering process so as to eliminate 
uninformative signal components while keeping the important 
ones? (2) Which frequency components must be present in an 
AR model to yield accurate, short-term predictions? (3) 

Whether there is a need to explicitly represent exogenous 
inputs, such as meals and insulin intake, into the model? and 
(4) How much data are needed to develop an accurate AR 
model? 

In this paper, we attempt to address the above questions by 
first associating the frequency content of subcutaneous glucose 
signals with those of blood glucose signals and then 
investigating the relative importance of the different frequency 
bands of the subcutaneous glucose signal in AR modeling. 
Based on the four major frequency bands suggested by 
Rahaghi and Gough [12], we applied subband AR modeling 
[17] to CGM signals of type 1 diabetic patients and 
determined the predictive power of the different frequency 
bands and their dependencies on prediction horizon. We found 
that, provided enough training data were available, the AR 
models captured all the frequency information present in the 
subcutaneous glucose concentration signal, obviating the need 
to explicitly represent exogenous inputs into the model, such 
as meals and insulin, for open-loop applications. We also 
found that the frequency band associated with the intrinsic 
response of glucose regulation was indispensable for obtaining 
accurate predictions up to 50 min ahead, although the energy 
content of this frequency band in the glucose signal is low 
(~1.5% of the total signal’s energy). Finally, we concluded that 
a training signal as short as 300 min, i.e., one that excludes 
low circadian rhythm frequencies, was capable of producing 
accurate predictions, potentially shortening data collection 
time and expediting model development. Together, these 
findings provide insights into the development of more 
effective and parsimonious AR models for short-term 
predictions of subcutaneous glucose concentrations in diabetic 
patients. 

II. METHODS 

A. Study Population 
In this paper, we analyzed the temporal dynamics and 

frequency content of subcutaneous glucose time-series data of 
nine deidentified type 1 diabetic patients. Subcutaneous 
glucose measurements were collected on a minute-by-minute 
basis for each of the nine subjects for approximately 5 days 
with the iSense CGM system [4, 6]. Subjects were confined to 
the investigational site for the whole duration of the study and 
limited to mild physical activity. Subjects were included if 
they were between 18 and 70 yr of age, had been diagnosed 
with type 1 diabetes and treated with insulin for at least 12 mo, 
had a body mass index of <35.0 kg/m2, and had glycated 
hemoglobin (HbA1c) of >6.1%. Subjects were excluded if 
they had acute and severe illness apart from diabetes, had a 
clinically significant abnormal electrocardiogram, hematology, 
or biochemistry screening test, or had any disease requiring the 
use of anticoagulants. In addition, subjects were excluded if 
they were pregnant or lactating.  

The subjects were provided three meals per day at 9 a.m., 1 
p.m., and 7 p.m. (plus a mid-afternoon snack at 4 p.m.) and 
continued their normal insulin therapy, which was provided 
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either by an external continuous insulin pump or by multiple 
daily subcutaneous injections. In addition, each subject 
received a bolus of regular or ultra rapid insulin immediately 
before each meal (excluding the snack) either by subcutaneous 
injection or via the subcutaneous catheter of the insulin pump. 
Figure 1a shows the raw CGM signal for one patient (subject 
#6) in our study collected over 4,000 min (66.7 h), where the 
time points of food and insulin intake are illustrated by vertical 
lines. The figure illustrates the typical daily variations in 
glucose concentration, including a drastic increase in 
concentration between 6 and 9 a.m. although no food or other 
nutrients were taken during the night. This is due to a circadian 
rhythm known as the ―dawn phenomenon,‖ which is explained 
by an increase in insulin resistance caused by certain 
hormones, and occurs in both diabetic and non-diabetic 
individuals alike [18, 19]. 

 

B. Frequency Analysis 
To study the relative importance and predictive power of the 

four major frequency bands suggested by Rahaghi and Gough 
[12] for subcutaneous CGM signals, we developed four 
bandpass filters, where each filter only passed glucose signals 
in one of the four period bands (Band I: 5-15 min, Band II: 60-
120 min, Band III: 150-500 min, and Band IV: ≥700 min) of a 
raw CGM time-series signal. Figure 1b shows the 
corresponding four bandpass-filtered signals extracted from 
the raw time-series signal in Fig. 1a. For example, through 
bandpass filtering of Band IV, only patterns associated with 
circadian rhythms, such as the 24-h dawn phenomenon, and 
ultradian rhythms with periodicities ≥700 min were extracted 
from the raw signal. However, because the Band I frequencies 
in Fig. 1b are expected to consist mainly of measurement noise 
devoid of any significant physiological information [15, 16], 
we performed limited analysis for this high-frequency band.  

We also developed multi-bandpass filters that only passed 
the frequencies associated with each of the pairwise 
combinations of three of the four bands, II, III, and IV. For 
example, for filters that passed the pairwise combination of 
bands II+III, we used a multi-bandpass filter that only passed 
the frequencies in each of these two bands, eliminating all 
other frequencies, including those in the 120-150 min gap 
between these bands. To obtain a reference glucose 
concentration signal and corresponding model against which 
all other subband signals and models could be compared with, 
we used a lowpass filter with a cut-off frequency of 1/3,600 Hz 
(equivalent to a period of 60 min), which removed the high-
frequency content of the CGM signal up to the lower bound of 
Band II. This cut-off frequency was selected for two reasons. 
First, as discussed above, Fourier series analysis from different 
studies of diabetic patients provides substantial evidence that 
CGM signals with periods shorter than 36 min are nonexistent 
[15] and that periods shorter than 72 min are characterized by 
white noise [16]. Second, our group has shown that, to obtain 
consistent AR coefficients and robust models from CGM 
signals, it is necessary to remove frequencies with periods 

shorter than ~90 min [4]. The resulting reference signal is 
illustrated in Fig. 1a.  

Finally, to analyze the overall frequency content of glucose 
concentration signals of type 1 diabetic patients, we used the 
Welch’s method with a Hamming window of 50% overlap to 
compute the power spectral density (PSD) of the raw CGM 
signals [20]. 

 

C. Autoregressive (AR) Modeling 
An AR model is a type of linear model where a future signal 

yn+1, at discrete time n+1, is represented by a linear 
combination of previous signal observations yn–i, i = 0, 1, 2,…, 
m–1, plus white noise εn+1,  
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where m denotes the order of the model, i.e., the number of 
previous observations used to represent yn+1, and bi represents 
fixed model coefficients. The coefficients bi describe the 
temporal correlations between each of the previous signals yn–i, 

i = 0, 1, 2,…, m–1, and the next one yn+1, and capture the 
frequency content of the underlying signal [3]. Therefore, we 
may use the set of coefficients bi and previous signals yn–i to 
make one-step-ahead predictions for yn+1, i.e., 
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where ŷn+1 denotes the predicted value for yn+1. Equation (2) 
can also be used to make k-step-ahead predictions, with k = 2, 
3,…, by iteratively substituting the k–1 predicted values for the 
corresponding k–1 yet unobserved signals. For example, we 
may make 2-step-ahead predictions ŷn+2 by substituting the 

       
0

200

400

G
lu

c
o
s
e
 (

m
g
/d

L
)

 

 

Raw Signal

Reference Signal (Periods >1h)

0 12 24 36 48 60
 

 

R
e
la

ti
v
e
 M

a
g
n
it
u
d
e
 (

m
g
/d

L
)

Time (h)

(b)

Night time Night time

No food or insulin

9 a.m. 1 p.m. 4 p.m. 7 p.m. 9 a.m. 1 p.m. 4 p.m. 7 p.m. 9 a.m. 1 p.m. 4 p.m. 7 p.m.

No food or insulin

Band III (150 - 500 min)

Band II (60 - 120 min)

Band I (5 - 15 min)

Band IV (> 700 min)

(a)

 
 
Fig. 1.  Subcutaneous glucose concentration of a typical type 1 diabetic 
patient. (a) Raw and reference (i.e., filtered) glucose signals. (b) Relative 
magnitude of the corresponding bandpass-filtered time series of the original 
raw signal representing the four major frequency bands.   
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predicted value ŷn+1 for its unobserved signal yn+1 on the right 
side of Eq. (2). 

An AR model can also be represented in the frequency 
domain. By performing a Z-transform of Eq. (1), we can 
convert its discrete-time representation into a frequency-
domain representation, 
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where H(z) denotes the corresponding transfer function of the 
AR model. Because the coefficients bi in an AR model capture 
the frequency content of the glucose signal, the PSD P(ω) of 
this all-pole transfer function H(z), 
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where ω denotes the radian frequency, can be used to 
approximate the spectrum of the underlying glucose signal 
[21]. 

To investigate the relative importance and predictive power 
of each of the three Bands (II, III, and IV) associated with the 
different dynamics of glucose regulation, we applied the 
method of regularized least squares to fit the coefficients bi 
and obtain AR models of order 30 (m = 30), as proposed in 
[4]. Regularization yields smoothly varying AR-model 
coefficients bi, a requirement for obtaining stable and accurate 
models with clinically acceptable time lags [4]. For all 
calculations, we used consecutive 2,000 min (or 2,000 data 
points) of the glucose signal of a subject to fit the AR model. 
For each subject, we developed separate AR models for each 
of the three bands as well as for the three pairwise 
combinations of bands. For comparison purpose, we also 
developed (reference) AR models for each subject using the 
reference signal consisting of all three bands. Moreover, to 
further investigate the glucose dynamics within the different 
frequency bands and their combinations and compare them to 
the spectrum estimated from the raw CGM signal using the 
Welch’s method, we calculated the PSD using Eq. (4) for each 
of the AR models. 

The predictive power was quantified by root mean squared 
error (RMSE) deviations, defined as the square root of the 
mean of the squared differences between the predicted value ŷn 
and the observed value yn. The predictive performance of the 
models were evaluated for each subject using their 
corresponding testing data between 2,000 and 4,000 min, and 
each model was evaluated for different prediction horizons, 
ranging from 1 to 50 min. 

III. RESULTS 
Figure 2 shows the PSDs estimated using the raw CGM 

signals for each of the nine patients in the study, where the 
signal energy was plotted as a function of the signal period 
instead of frequency to facilitate physiological interpretation. 
The majority of the signal’s energy fell within the two longest 
period ranges, Bands III and IV. In contrast, Band II contained 
a relatively small amount of the total energy (~1.5%), while 
the energy in Band I was only ~0.6% of the total, which 
supports the conclusion that, as in blood glucose signals [14], 
CGM signals of type 1 diabetic patients lack high-frequency 
pulsatile insulin secretion patterns. 

Figure 2 also illustrates the differences in the signal 
spectrum profile for each of the frequency bands. For example, 
Band IV was characterized by two distinct peaks at ~12 and 
~24 h associated with well-established ultradian and circadian 
periods [11]. Similarly, Band III was characterized by five 
distinct peaks at approximately 3.0, 3.5, 5.0, 6.0, and 8.0 h. 
The periods at 3.0 and 6.0 h exactly coincided with meal and 
insulin schedules at 1 p.m., 4 p.m., and 7 p.m., whereas the 
periods at 3.5 and 5.0 h were likely related to the 4.0 h time 
interval between meal and insulin schedules at 9 a.m. and 1 
p.m. We speculate that the 8.0 h period is not associated with 
meal and insulin schedules, but rather with ultradian 
oscillations associated with sleep [13]. Finally, analysis of the 
spectrum profile for Band II indicated a number of peaks, 
including two predominant ones with periods at ~80 and ~105 
min (results not shown in the scale used in Fig. 2). This finding 
is corroborated by the work of Simon et al. [10], who 
identified the predominant period of the intrinsic regulatory 
response in blood glucose to vary from 51 to 112 min. 

Figure 3 shows the mean PSDs (averaged over the nine 
subjects) for Bands II, III, and IV and their pairwise 
combinations estimated from the corresponding AR-model 
coefficients using Eq. (4). The results show that, as expected, 
each AR model only captured the frequency content of the 
corresponding frequency band(s) of the CGM signals. 

 
 
Fig. 2.  Power spectral densities (PSD) of the raw glucose time series of nine 
patients and their averaged spectrum estimated using the Welch’s method. 
The four gray areas correspond to the four modeled frequency bands. 
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Comparison with Fig. 2 indicated that the PSDs estimated by 
the subband AR models were, in general, less resolved than the 
ones obtained from the raw signal (i.e., Fig. 2). For instance, 
Fig. 2 shows five salient periods in Band III while Fig. 3b 
depicts only two of them, at ~3.0 and ~6.0 h. This is mainly 
attributed to the constraint, or regularization, imposed on the 
fitting of the AR model coefficients bi [4]. 

Figure 4 shows the predictive performance of the subband 
AR models, where RMSEs, averaged over the nine subjects, 
were plotted as a function of prediction horizon for the 
reference model as well as for the single-band models (Fig. 4a) 
and the pairwise-band models (Fig. 4b). As expected, Fig. 4a 
shows that the reference model, which captured the full 
dynamic range of the glucose signal, yielded the smallest 
RMSEs across the 0-50 min prediction horizons. For 
prediction horizons of <25 min, the AR models obtained with 
Band II or Band III frequencies had essentially the same 
predictive performance as the model obtained with the 
reference signal. This result is instructive because it suggests 
that, for short prediction horizons, middle-frequency 
dynamics, resulting from intrinsic oscillations or schedules of 
exogenous inputs, are sufficient to produce accurate models 
and that low-frequency dynamics, associated with circadian 
rhythms, may not be necessary. For longer prediction horizons 
(25-50 min), Band III models outperformed Band II models 
because the former contained more low-frequency content 
required for predicting longer horizons. This was evident by 
the performance of Band IV model, which had the worst 
predictive performance for short horizons (<40 min) while 
outperforming Band II and III models for prediction horizons 
of >45 min. We also confirmed that Band I signals were not 
informative, as simulations showed that models based solely 
on this frequency band consistently underperformed the other 
models (results not shown). 

Figure 4b compares the performance of the pairwise-band 
models. In stark contrast with the single-band models, the 

results indicate that when we considered frequencies from 
Band II, with either Band III or Band IV, the resulting 
pairwise models were as predictive over the 0-50-min 
prediction horizon as those obtained with the reference model. 
These results suggest that although a frequency band may not 
have sufficient predictive power by itself, in combination with 
other bands, the resulting models could be very accurate. 
Importantly, they also indicate that the energy content of a 
signal alone was not necessarily an appropriate metric for 
indicating its predictive power (as discussed above, Band II 
accounts for only ~1.5% of the total energy of the glucose 
signal). Conversely, models constructed using frequencies 
from Bands III+IV, which account for ~93.0% of the signal’s 
total energy, showed inferior performance when compared 
with the other pairwise models and some of the single-band 
models.  

These results suggest that the prediction accuracy of AR 
models is highly dependent on which frequencies of the CGM 
signal are captured by the AR model coefficients bi and weakly 
dependent on the resolution of the captured frequencies. For 
example, as discussed above, the AR models for Band III only 
captured two (Fig. 3b) of the five salient periods in this 
frequency band (Fig. 2). Nevertheless, for a 25-min prediction 
horizon, the Band III AR models yielded an average RMSE of 
<2 mg/dL (Fig. 4a).  

To provide further insights into the role of the different 
frequency bands in AR-model predictions, we analyzed 35-
min-ahead predictions for a typical patient (subject #6) for 
models based on the six possible combinations of single and 
pairwise frequency bands, as illustrated in Fig. 5.  

Figure 5a shows that while the Band II model was capable 
of yielding smooth predictions for the high-frequency 
oscillations, such as those around 3,000 min, it either 
underpredicted or overpredicted the low-frequency trends, 
systematically generating a prediction bias. Conversely, Fig. 
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Fig. 3.  Mean power spectral densities (PSD) of single-frequency bands (a-c) 
and pairwise-frequency bands (d-f) estimated through the AR-model 
coefficients. 
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5b shows that the Band III model yielded accurate, albeit non-
smooth, predictions for the low-frequency trends while 
overpredicting the high-frequency excursions. These were 
further accentuated by the Band IV model (Fig. 5c), which 
produced predictions with large oscillations. In contrast, Fig. 
5, d and e, show that when Band II was combined with, either 
Band III or Band IV, the resulting models were extremely 
accurate, yielding negligible RMSEs. Importantly, the 
exclusion of the Band III frequencies (Fig. 5e), which are 
deemed to reflect the schedules of exogenous inputs, such as 
meals and insulin intake, did not negatively impact the 
predictive power of the Band II+IV model. This supports the 
finding of Finan et al. [22], which suggests that providing the 
model with timing information about exogenous inputs may be 
redundant. Moreover, the exclusion of the circadian rhythms in 
Band IV from the model did not impact the predictive power 
of the Band II+III model (Fig. 5d). This observation is 
important from a model development point of view, because it 
indicates that the training data can be obtained from time 
segments much shorter than 24 h. This conclusion is supported 
by simulations shown in Fig. 4a, where the RMSE profile over 
the entire prediction horizon for a model trained on only 300 
min of the reference signal (dashed line) coincided with that of 
the reference model trained on the entire 2,000 min. Figure 5f 
shows that a model based on the combination of Bands III+IV 
did not produce accurate predictions (RMSE = 12.5 mg/dL), 
supporting our finding that the inclusion of Band II 
frequencies was required to achieve high-fidelity models. 
Finally, we confirmed that models based on Band I frequencies 
lacked predictive power, yielding 35-min-ahead prediction 
RMSEs ranging from 25 mg/dL for pairwise-band models to 
247 mg/dL for single-band models (results not shown). 

IV. CONCLUSION AND DISCUSSION  
In this paper, we linked the different frequency bands of the 

subcutaneous glucose signal with the corresponding ones from 
blood glucose and their physiological mechanisms of glucose 
regulation. Using subband analysis of CGM signals from type 
1 diabetic patients, we investigated the relative importance and 
predictive power of these frequency bands for short-term AR-
model predictions by addressing four outstanding issues: (1) 
How to optimize the glucose signal filtering process so as to 
eliminate uninformative signal components while keeping the 
important ones? (2) Which frequency components must be 
present in an AR model to yield accurate, short-term 
predictions? (3) Whether there is a need to explicitly represent 
exogenous inputs, such as meals and insulin intake, into the 
model? and (4) How much data are needed to develop an 
accurate AR model? 

First, we showed that the high-frequency signals in Band I 
associated with pulsatile insulin secretion in healthy 
individuals are nonexistent and, hence, lack predictive power 
in the forecast of type 1 diabetic patients. This is supported by 
the work of Gough et al. [14] who show that high-frequency 
signals with periods shorter than 18 min should be treated as 
noise in type 1 diabetic patients. Moreover, the work of Breton 
et al. [15] suggests that signals with periods shorter than 36 
min are noninformative in type 1 diabetic patients, supporting 
our recommendation to filter out signals with frequencies 
above 1/3,600 Hz, i.e., periods below 60 min, before the 
development of AR models. Such filtering has been found to 
be required to yield consistent AR coefficients and robust 
models [4]. 

We hypothesize that similar filtering would be required to 
develop AR models for type 2 diabetic patients because while 
pulsatile secretion of insulin is not completely absent in this 
patient population it is drastically attenuated [9]. This 
hypothesis is corroborated by Miller and Strange [16] who 
suggest that, for type 2 diabetic patients, CGM signals with 
periods shorter than 72 min are characterized by white noise, 
and by our recent work, which shows that when signals with 
periods below ~90 min are filtered out the resulting AR 
models become portable from individual-to-individual 
regardless of the type of diabetes [5]. It is not evident, 
however, whether this filtering should be performed in signals 
from nondiabetic, fasting individuals with healthy β cells and 
prominent periods between 5 and 15 min [12]. 

Second, we showed that, among the single-band models, 
those based on Band II frequencies, which account for the 
intrinsic response of glucose regulation, and Band III 
frequencies, which represent the responses to external 
schedules, resulted in modest prediction errors (<3 mg/dL) for 
prediction horizons of up to 25 min. For models based on pairs 
of frequency bands, the inclusion of Band II, with either Bands 
III or IV, was imperative to achieving accurate predictions 
over the 0-50 min range of prediction horizons, matching those 
obtained by the reference model including all three bands. 
Overall, the pairwise-band models containing Band II 
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outperformed each of the single-band models. These results 
strongly suggest that, for accurate AR-model predictions, Band 
II frequencies must be captured from the CGM signal. While 
this finding should have been expected from the well-
established glucose dynamics in response to meals and insulin 
represented by the Band II frequencies, it is somewhat 
surprising that the energy content of these frequencies only 
account for ~1.5% of the signal’s total energy. 

While the stratification of the glucose signal frequency into 
the four bands used here follows those suggested by Rahaghi 
and Gough [12], we note that other studies suggest slightly 
different ranges for the frequency bands and examine their 
underlying driving mechanisms from different perspectives [9-
13, 15-16, 18-19]. Moreover, the chosen bands are not 
exhaustive, as there are uncovered frequency ranges, or gaps, 
between the selected bands. To determine the effect of the 
uncovered frequencies in our results, we extended each side of 
Band III to cover the entire range between 120-700 min, i.e., 
we closed the gaps between Band II and Band III and between 
Band III and Band IV, and recomputed the corresponding 
model predictions. Figure 6 shows that, as expected, the wider 
Band III (120-700 min vs. the original 150-500 min) produced 
smaller prediction errors, however, the improvements were 
marginal for both the single-band and the pairwise-band 
models. These results suggest that short-term AR-model 
predictions are not very sensitive to slight variations in the 
selection of the ranges of the frequency bands. 

Third, we found that the frequency content of Bands II, III, 
and IV capture the dynamics of glucose regulation of type 1 
diabetic patients, obviating the need to explicitly represent and 
model exogenous inputs, such as caloric content of meals, 
amount and type of insulin, and their schedules, for short-tem 
(0-50 min), open-loop, glucose concentration predictions. This 
is likely attributed to many factors: the blood-to-interstitial 
transport attenuation of the high-frequencies in the CGM 
signal below our Band II cutoff; the multiple periodicity of the 
insulin regimen in our study, where patients received daily 
bolus insulin and either continuous basal insulin or multiple 
long-acting insulin injections; and the observation that the 
most important periods for short-term predictions are those 
between 60 and 120 min (Band II), which encompass the time 
constants associated with the responses to meals and insulin 
intake.  

The lack of a requirement to explicitly represent exogenous 
inputs for short-term predictions with autoregressive models is 
also supported by our recent work [5], which shows that an AR 
model based on the frequencies in Bands II-IV from one 
diabetic patient was able to accurately predict the glucose 
concentration of 33 other patients from three distinct studies, 
regardless of—among other factors—the different meals and 
insulin intake regimens. Moreover, Finan et al. have also 
reported that autoregressive models with exogenous inputs, 
i.e., ARX models, do not perform better than AR models that 
exclude such information [22]. Because information about 
these exogenous inputs is usually not readily available, the 

ability of AR models to make accurate predictions solely on 
the basis of prior CGM signals—for example, for open-loop 
alarms to prevent hypo- and hyper-glycemic episodes—
provides a significant advantage over more traditional first-
principle models that require such inputs. Conversely, for a 
model to be useful for a closed-loop artificial pancreas, it must 
represent and infer the effects of exogenous inputs. 

Fourth, we found that AR models could be developed based 
on time-series signals of short length (~300 min), i.e., 
excluding circadian rhythm information, without any detriment 
in prediction accuracy. This observation simplifies and 
expedites model development by significantly shortening data-
collection time. 

In conclusion, we have analyzed the relative importance of 
the different frequency bands of subcutaneous glucose signals 
in type 1 diabetic patients within the context of developing 
data-driven, AR models. This analysis provides insights, which 
should be useful for efficient development of more effective 
and parsimonious data-driven models for short-term prediction 
of glucose concentrations in diabetic patients. 
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